TO ALL TO WHOM THESE PRESENTS SHALL COME:

VEHAB Genetics Corporation

Whereas, there has been presented to the Secretary of Agriculture

AN APPLICATION REQUESTING A CERTIFICATE OF PROTECTION FOR AN ALLEGED DISTINCT VARIETY OF SEXUALLY REPRODUCED, OR TUBER PROPAGATED PLANT, THE NAME AND DESCRIPTION OF WHICH ARE CONTAINED IN THIS APPLICATION AND EXHIBITS, A COPY OF WHICH IS HERETO ANNEXED AND MADE A PART HEREOF, AND THE VARIOUS REQUIREMENTS OF LAW IN SUCH CASES MADE AND PROVIDED HAVE BEEN COMPLIED WITH, AND THE TITLE THERETO IS, FROM THE RECORDS OF THE PLANT VARIETY PROTECTION OFFICE, IN THE APPLICANT(S) INDICATED IN THE SAID COPY, AND WHEREAS, UPON DUE EXAMINATION MADE, THE SAID APPLICANT(S) IS (ARE) ADJUDGED TO BE ENTITLED TO A CERTIFICATE OF PLANT VARIETY PROTECTION UNDER THE LAW.

NOW, THEREFORE, THIS CERTIFICATE OF PLANT VARIETY PROTECTION IS TO GRANT UNTO THE SAID APPLICANT(S) AND THE SUCCESSORS, HEIRS OR ASSIGNS OF THE SAID APPLICANT(S) FOR THE TERM OF TWENTY YEARS FROM THE DATE OF THIS GRANT, SUBJECT TO THE PAYMENT OF THE REQUIRED FEES AND PERIODIC REPLACEMENT OF VIALABLE SEED OF THE VARIETY IN A PUBLIC REPOSITORY AS PROVIDED BY LAW, THE RIGHT TO EXCLUDE OTHERS FROM SELLING THE VARIETY, OR OFFERING IT FOR SALE, OR REPRODUCING IT, OR IMPORTING IT, OR EXPORTING IT, OR CONDITIONING IT FOR PROPAGATION, OR STOCKING IT FOR ANY OF THE ABOVE PURPOSE, OR USING IT IN PRODUCING A HYBRID OR DIFFERENT VARIETY THEREFROM, TO THE EXTENT PROVIDED BY THE PLANT VARIETY PROTECTION ACT, (84 STAT. 1542, AS AMENDED, 7 U.S.C. 2321 ET SEQ.)

CORN, FIELD
'GM9215'

In Testimony Whereof, I have hereunto set my hand and caused the seal of the Plant Variety Protection Office to be affixed at the City of Washington, D.C., this twenty-sixth day of November, in the year two thousand two.
DEKALB Genetics Corporation

3100 Sycamore Road
DeKalb, IL 60115

Zea Mays
Gramineae

Corn

Corporation

Delaware

June 15, 1988

Dr. Tim Kain, Patent Scientist
Monsanto Company
3100 Sycamore Road
DeKalb IL 60115
Ph. 815-758-9281 Fax 815-758-4106
trkain@monsanto.com

CHECK APPROPRIATE BOX FOR EACH ATTACHMENT SUBMITTED (Follow instructions on reverse)

a. [] Exhibit A. Origin and Breeding History of the Variety
b. [] Exhibit B. Statement of Distinctness
c. [] Exhibit C. Objective Description of the Variety
d. [] Exhibit D. Additional Description of the Variety (Optional)
e. [] Exhibit E. Statement of the Basis of the Applicant's Ownership
f. [] Voucher Sample (2,500 viable untreated seeds or, for tuber propagated varieties verification that tissue culture will be deposited and maintained in an approved public repository)
g. [] Filing and Examination Fee ($2,450), made payable to "Treasurer of the United States" (Mail to PVPO)

US. February 1998

21. The applicant(s) declare that a viable sample of basic seed of the variety will be furnished with application and will be replenished upon request in accordance with such regulations as may be applicable, or for a tuber propagated variety a tissue culture will be deposited in a public repository and maintained for the duration of the certificate.

The undersigned applicant(s) is/are the owner(s) of this sexually reproduced or tuber propagated plant variety, and believe(s) that the variety is new, distinct, uniform, and stable as required in Section 42, and is entitled to protection under the proviso of Section 42 of the Plant Variety Protection Act.

Applicant(s) is/are informed that false representation herein can jeopardize protection and result in penalties.
EXHIBIT A

Origin and Breeding History
GM9215

GM9215 was selected for greater yield, standability, leaf disease tolerance, grain quality, and improved combining ability.

Summer 1987 The inbred line BA208 (a proprietary DEKALB Genetics Corporation inbred) was crossed to inbred line HBA1 (a proprietary DEKALB Genetics Corporation inbred). BA208=87WC:1004 and HBA1=87WC:1071.

Winter 1987 Plants of the cross BA208*HBA1 were crossed to the inbred HBA1 (Nursery book row number 87F:1309).

Summer 1988 Plants of the cross BA208*HBA1/HBA1 were self-pollinated and 41 ears were selected. (Nursery book row numbers 88:741-760).

Summer 1989 S2 seed was grown ear-to-row (Nursery book row numbers 89:20783-20823).

Summer 1990 S3 seed was grown ear-to-row (Nursery book row numbers 90:30273-30311).

Summer 1991 S4 seed was grown ear-to-row (Nursery book row numbers 91:40105-40123).

Winter 1991 S5 seed was grown ear-to-row (nursery book row number 91F:5231).

Summer 1992 S6 seed was grown ear-to-row. Seed from row number 92:40027 was given the designation GM9215.

Statement of Stability and Uniformity

Corn inbred GM9215 was coded in 1992 and has been reproduced by self pollination for the past four years and judged to be stable. Inbred GM9215 is uniform for all traits observed.

Statement of Variants

GM9215 shows no variants other than what would normally be expected due to environment or that would occur for almost any character during the course of repeated sexual reproduction.
EXHIBIT B

Statement of Distinctness

DEKALB Genetics Corporation believes that GM9215 is most similar to corn inbred 88145, an inbred developed by DEKALB Genetics Corporation.

GM9215 and 88145 differ most significantly in the following traits:

Qualitative Data for GM9215 vs. 88145

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>GM9215</th>
<th>88145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf Sheath</td>
<td>Strong</td>
<td>Absent</td>
</tr>
<tr>
<td>Anthocyanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anther Color</td>
<td>Pink (2.5 R 7/6)</td>
<td>Green-Yellow (2.5 GY 8/6)</td>
</tr>
<tr>
<td>Cob Color</td>
<td>Red (5 R 3/8)</td>
<td>Pink (2.5 R 7/6)</td>
</tr>
</tbody>
</table>

Isozyme Profile Data for GM9215 vs. 88145

<table>
<thead>
<tr>
<th>LOCI</th>
<th>ISOZYME ALLELE</th>
<th>GM9215</th>
<th>88145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeph1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Adh1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cat3</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Got3</td>
<td>4</td>
<td>4*</td>
<td></td>
</tr>
<tr>
<td>Got2</td>
<td>4**</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Got1</td>
<td>4</td>
<td>6*</td>
<td></td>
</tr>
<tr>
<td>Idh1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Idh2</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mdh1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Mdh2</td>
<td>6**</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mdh3</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Mdh4</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Mdh5</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Pgm1</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Pgm2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6Pgd1</td>
<td>3.8</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>6Pgd2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Phi1</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* - allelic pattern could not be confirmed with a photograph
** - allele is probably a 6, but a null cannot be ruled out
United States Department of Agriculture, Agricultural Marketing Service
Science Division, Plant Variety Protection Office
National Agricultural Library Building, Room 500
Beltsville, MD 20705

OBJECTIVE DESCRIPTION OF VARIETY
CORN (Zea mays L.)

Name of Applicant(s)
DEXALB Genetics Corporation

Variety Seed Source

Variety Name or Temporary Designation
GM9215

FOR OFFICIAL USE
VPO Number
9800299

Address (Street & No., or R.F.D. No., City, State, Zip Code and Country)
3100 Sycamore Road, Dekalb, IL 60115 U.S.A.

Place the appropriate number that describes the varietal characters typical of this inbred variety in the spaces below. Right justify whole numbers by adding leading zeroes if necessary. Completeness should be striven for to establish an adequate variety description. Traits designated by a '*' are considered necessary for an adequate variety description and must be completed.

COLOR CHOICES (Use in conjunction with Munsell color code to describe all color choices; describe #25 and #26 in Comments section):
01=Light Green
02=Medium Green
03=Dark Green
04=Very Dark Green
05=Green-Yellow

06=Pale Yellow
07=Yellow
08=Yellow-Orange
09=Salmon
10=Pink-Orange

11=Pink
12=Light Red
13=Cherry Red
14=Red
15=Red & White

16=Pale Purple
17=Purple
18=Colorless
19=White
20=White Capped

21=Buff
22=Tan
23=Brown
24=Bronze
25=Variegated (Describe)
26=Other (Describe)

STANDARD INBRED CHOICES (Use the most similar (in background and maturity) of these to make comparisons based on grow-out trial data):

Yellow Dent Families: Col09, ND246, OM7, T232

B14 OM105, A632, B64, B68
B37 B37, B76, H04
B73 N192, A679, B73, NC268
C103 Mo17, Va102, Va35, A682
CH43 A619, M571, H99, Va26
WF9 W46A, A554, A654, Pa91

White Dent: C103, Iowa5125, P39, 2132

Popcorn: SG1533, 4722, KP301, KP7211

Pipercorn: Mo15W, Mo16W, Mo24W

1. TYPE: (describe intermediate types in Comments section)
 * 8 1=Sweet 2=Dent 3=Flint 4=Flour 5=Pop 6=Ornamental 7=Pipercorn 8=Flint-Dent

2. REGION WHERE DEVELOPED IN THE U.S.A.:
 * 2 1=Northwest 2=Northcentral 3=Northeast 4=Southeast 5=Southcentral
 6=Southwest 7=Other

3. MATURITY (In Region Best Adaptability; show Heat Unit formula in "Comments" section):
 * DAYS HEAT UNITS
 0 8 7 1 7 0 3.0 From emergence to 50% of plants in soil
 0 8 4 1 6 3 6.0 From emergence to 50% of plants in pollen
 0 0 7 8.0 From 10% to 90% pollen shed
 (*) - - - - - - From 50% silk to optimum edible quality
 0 5 9 1 1 2 2.0 From 50% silk to harvest at 25% moisture

4. PLANT:
 Standard Deviation Sample Size
 2 0 8.9 cm Plant Height (to tassel tip) 18.775 40
 0 8 3.9 cm Ear Height (to base of top ear node) 14.696 40
 0 1 2.9 cm Length of Top Ear Internode 2.205 40
 Average Number of Tillers
 1. 6 Average Number of Ears per Stalk 0.208 40
 2 Anthocyanin of Brace Roots: 1=Absent 2=Faint 3=Moderate 4=Dark

Application Variety Data
Page 1

Standard Inbred Data

4
Application Variety Data

5. LEAF:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 7.4 cm Width of Ear Node Leaf</td>
<td>0.493</td>
<td>40</td>
<td>0 9.0</td>
<td>170</td>
</tr>
<tr>
<td>0 1.2 cm Length of Ear Node Leaf</td>
<td>2.050</td>
<td>40</td>
<td>0 6 8.8</td>
<td>170</td>
</tr>
<tr>
<td>6.2 Number of leaves above top ear</td>
<td>0.542</td>
<td>20</td>
<td>5.1</td>
<td>85</td>
</tr>
<tr>
<td>3 5.4 degrees Leaf Angle (measure from 2nd leaf above ear at anthesis to stalk above leaf)</td>
<td>5.112</td>
<td>40</td>
<td>3 3.4</td>
<td>170</td>
</tr>
<tr>
<td>0 1 Leaf Color (Munsell code 5 GY 5/10)</td>
<td></td>
<td></td>
<td>0 2 (Munsell code 5 GY 4/8)</td>
<td></td>
</tr>
<tr>
<td>9 Leaf Sheath Pubescence (Rate on scale from 1=none to 9=peach fuzz)</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 Marginal Waves (Rate on scale from 1=none to 9=many)</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1 Longitudinal Creases (Rate on scale from 1=none to 9=many)</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

6. TASSEL:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 7.0 Branch Angle from Central Spike</td>
<td>10.073</td>
<td>40</td>
<td>4 7.0</td>
<td>170</td>
</tr>
<tr>
<td>4 3.9 cm Tassel Length (from top leaf collar to tassel tip)</td>
<td>5.621</td>
<td>40</td>
<td>4 6.5</td>
<td>170</td>
</tr>
<tr>
<td>7.0 Pollen Shed (Rate on scale from 0=male sterile to 9=heavy shed)</td>
<td></td>
<td></td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>1 1 Anther Color (Munsell code 2.5 R 7/6)</td>
<td></td>
<td></td>
<td>0 5 (Munsell code 2.5 GY 8/6)</td>
<td></td>
</tr>
<tr>
<td>0 2 Glume Color (Munsell code 5 GY 4/8)</td>
<td></td>
<td></td>
<td>0 2 (Munsell code 5 GY 4/8)</td>
<td></td>
</tr>
<tr>
<td>1 Bar Glumes (Glume Bands): 1=Absent 2=Present</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

7a. EAR (Unhusked Data):

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 Silk Color (3 days after emergence) (Munsell code 5 R 6/6)</td>
<td></td>
<td></td>
<td>2 2 (Munsell code 2.5 GY 8/6 with 5 R 5/8)</td>
<td></td>
</tr>
<tr>
<td>0 2 Fresh Husk Color (25 days after 50% silking) (Munsell code 5 GY 4/8)</td>
<td></td>
<td></td>
<td>0 2 (Munsell code 5 GY 4/8)</td>
<td></td>
</tr>
<tr>
<td>2 1 Dry Husk Color (65 days after 50% Silking) (Munsell code 2.5 Y 8/4)</td>
<td></td>
<td></td>
<td>2 1 (Munsell code 2.5 Y 8/4)</td>
<td></td>
</tr>
<tr>
<td>1 Position of Ear at Dry Husk Stage: 1=Upright 2=Horizontal 3=Pendent</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1 Husk Tightness (Rate on scale from 1=very loose to 9=very tight)</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2 Husk Extension (at harvest): 1=Short (ears exposed) 2=Medium (<8 cm) 3=Long (8-10 cm beyond ear tip) 4=Very Long (>10 cm)</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

7b. EAR (Husked Ear Data):

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
<th>Standard Deviation</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.60 cm Ear Length</td>
<td>0.695</td>
<td>20</td>
<td>1 8.4</td>
<td>80</td>
</tr>
<tr>
<td>4 1.5 mm Ear Diameter at mid-point</td>
<td>1.320</td>
<td>20</td>
<td>3 4.9</td>
<td>80</td>
</tr>
<tr>
<td>1 0.6 gm Ear Weight</td>
<td>11.163</td>
<td>40</td>
<td>1 0 1.1</td>
<td>160</td>
</tr>
<tr>
<td>1 6 Number of Kernel Rows</td>
<td>0.683</td>
<td>20</td>
<td>1 1</td>
<td>80</td>
</tr>
<tr>
<td>2 Kernel Rows: 1=Indistinct 2=Distinct</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 Row Alignment: 1=Straight 2=Slightly Curved 3=Spiral</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0 7.0 cm Shank Length</td>
<td>1.190</td>
<td>40</td>
<td>1 3.2</td>
<td>160</td>
</tr>
<tr>
<td>2 Ear Taper: 1=Slit 2=Average 3=Extreme</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Application Variety Data

Note: Use chart on first page to choose color codes for color traits.
<table>
<thead>
<tr>
<th>Application Variety Data</th>
<th>Page 3</th>
<th>Standard Inbred Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. KERNEL (Dried):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard Deviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>1 0.0 mm Kernel Length</td>
<td>0.957</td>
<td>20</td>
</tr>
<tr>
<td>0 7.9 mm Kernel Width</td>
<td>0.379</td>
<td>20</td>
</tr>
<tr>
<td>0 4.9 mm Kernel Thickness</td>
<td>0.346</td>
<td>20</td>
</tr>
<tr>
<td>8 0.0 % Round Kernels (Shape Grade)</td>
<td>7.125</td>
<td>500g</td>
</tr>
<tr>
<td>1 Aleurone Color Pattern: 1=Homzygous 2=Segregating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*) 1 8 Aleurone Color (Munsell code __________)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 0 7 Hard Endosperm Color (Munsell code 2.5 Y 8/10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 0 3 Endosperm Type: 1=Sweet (sui) 2=Extra Sweet (sh2) 3=Normal Starch 4=High Amylose Starch 5=Waxy Starch 6=High Protein 7=High Lysine 8=Super Sweet (se) 9=High Oil 10=Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 5.7 gm Weight per 100 Kernels (un-sized sample)</td>
<td>2.413</td>
<td>400 seeds</td>
</tr>
<tr>
<td>9. COB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2 7.3 mm Cob Diameter at mid-point</td>
<td>1.418</td>
<td>20</td>
</tr>
<tr>
<td>1 4 Cob Color (Munsell code 5 R 3/8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 10. DISEASE RESISTANCE (Rate from 1 (most susceptible) to 9 (most resistant); leave blank if not tested; leave Race or Strain Options blank if polygenic): |

A. Leaf Blights, Wilts, and Local Infection Diseases
7 Anthracnose Leaf Blight (Colletotrichum graminicola)
6 Common Rust (Puccinia sorghi)
5 Common Smut (Ustilago maydis)
4 Eyespot (Xabatiella zeeae)
3 Goss's Wilt (Clavibacter michiganense spp. nebraskanse)
2 Gray Leaf Spot (Cercospora zeeae-maydis)
1 Helmischosporium Leaf Spot (Bipolaris zeicola) Race 2
7 Northern Leaf Blight (Escherihium turcicum) Race 2
7 Southern Leaf Blight (Bipolaris maydis) Race 6
7 Southern Rust (Puccinia polysora)
6 Steward's Wilt (Ewrinia stewartii)
5 Other (Specify) ______

B. Systemic Diseases
3 Corn Lethal Necrosis (MCMV and MDMV)
2 Head Smut (Sphacelotheca relliana)
1 Maize Chlorotic Dwarf Virus (MCDV)
1 Maize Chlorotic Mottle Virus (MCMV)
1 Maize Dwarf Mosaic Virus (MDMV) Strain ______
1 Sorghum Downy Mildew of Corn (Peronosclicerspora sorghi)
5 Other (Specify) ______

C. Stalk Rots
2 Anthracnose Stalk Rot (Colletotrichum graminicola)
2 Diplodia Stalk Rot (Stenocarpella maydis)
2 Fusarium Stalk Rot (Fusarium moniliforme)
2 Gibberella Stalk Rot (Gibberella zeae)
1 Other (Specify) ______

D. Ear and Kernel Rots
2 Aspergillus Ear and Kernel Rot (Aspergillus fiasus)
2 Diplodia Ear Rot (Stenocarpella maydis)
2 Fusarium Ear and Kernel Rot (Fusarium moniliforme)
2 Gibberella Ear Rot (Gibberella zeae)
2 Other (Specify) ______

<table>
<thead>
<tr>
<th>Application Variety Data</th>
<th>Standard Inbred Data</th>
</tr>
</thead>
</table>

Note: Use chart on first page to choose color codes for color traits.
Data was reported as means across years and locations. Each of the aforementioned characteristics had a wide range of values due to spacial and temporal variation of the test contributing to the large standard deviation. Growing conditions (soil, climate, drought conditions, etc.) contributed significantly to influence the variability of the traits measured.
EXHIBIT E

STATEMENT OF THE BASIS OF OWNERSHIP

1. **NAME OF APPLICANT(S)**

 DEKALB Genetics Corporation

2. **TEMPORARY DESIGNATION OR EXPERIMENTAL NUMBER**

 GM9215

3. **VARIETY NAME**

 GM9215

4. **ADDRESS (Street and No., or R.F.D. No., City, State, and ZIP, and Country)**

 3100 Sycamore Road
 DeKalb, IL 60115
 U.S.A.

5. **TELEPHONE (include area code)**

 (815) 758-3461

6. **FAX (include area code)**

 (815) 758-4106

7. **PVPO NUMBER**

 9800299

8. **Does the applicant own all rights to the variety?** *Mark an “X” in appropriate block. If no, please explain.*

 [X] YES [] NO

9. **Is the applicant (individual or company) a U.S. national or U.S. based company?**

 [X] YES [] NO

10. **Is the applicant the original owner?**

 [X] YES [] NO *If no, please answer one of the following:*

 a. **If original rights to variety were owned by individual(s), is (are) the original owner(s) a U.S. national(s)?**

 [] YES [X] NO *If no, give name of country*

 b. **If original rights to variety were owned by a company(ies), is(are) the original owner(s) a U.S. based company?**

 [X] YES [] NO *If no, give name of country*

11. **Additional explanation on ownership (if needed, use reverse for extra space):**

 GM9215 was originated and developed by a breeder employed by DEKALB Genetics Corporation. By agreement between DEKALB Genetics Corporation and the breeder, all rights to any invention, discovery, or development are assigned to DEKALB Genetics Corporation. No rights to such invention, discovery, or development are retained by the breeder.

PLEASE NOTE:

Plant variety protection can be afforded only to owners (not licensees) who meet one of the following criteria:

1. If the rights to the variety are owned by the original breeder, that person must be a U.S. national, national of a UPOV member country, or national of a country which affords similar protection to nationals of the U.S. for the same genus and species.

2. If the rights to the variety are owned by the company which employed the original breeder(s), the company must be U.S. based, owned by nationals of a UPOV member country, or owned by nationals of a country which affords similar protection to nationals of the U.S. for the same genus and species.

3. If the applicant is an owner who is not the original owner, both the original owner and the applicant must meet one of the above criteria.

The original breeder/owner may be the individual or company who directed final breeding. See Section 41(a)(2) of the Plant Variety Protection Act for definition.